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ABSTRACT1
The importance of walking, the most basic form of transportation, is growing. Climate change,2
comfortable walking distances could get reduced drastically. There is a clear need to better under-3
stand how outdoor thermal comfort (OTC) and walking interact. In this work, thermoregulation4
of the human body is modeled with the two-node model to determine the influence of the micro-5
climate on pedestrian’s OTC. First, the impact of the current microclimate in Zurich on the route6
choice of pedestrians is analyzed. We found no significant correlation between simulated OTC7
of walking a particular route and route choices for all trips, but results for longer trips indicate a8
possible influence. It is pointed out that the same assessment could be done for other regions, and9
results could contribute to more accurate pedestrian modeling. Second, a tool is developed that can10
estimate OTC-corrected walking distances from any location. The tool is applied to the current cli-11
mate and future climate scenarios. The results show that in the future, pedestrian’s OTC in Zurich12
will be severely decreased. Further, the tool can detect where there is potential for and, through13
its accessibility approach, quantify improvements to the built environment citywide. Future work14
should focus on enhancing physiological input parameters to the model. This work provides a15
novel use of the two-node model for walking subjects in a citywide assessment.16

17
Keywords: Outdoor Thermal Comfort, Heat Stress, Walkability, Route Choice, Dynamic Thermal18
Environment, Climate Change19
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INTRODUCTION1
With the revival and reurbanization of the inner cities around the globe, walking, the most basic2
form of transportation, has become a topic of growing interest over the last decade. For certain3
use cases, walking can be considered superior to other modes, as it does not come with negative4
externalities regarding emissions, landscape aesthetics, and space consumption (1). It further in-5
cludes positive externalities on the individual level such as physical and mental health (2) and can6
provide recreational value. For urban and transport planners, it is essential to know how to as-7
sess whether our cities are walkable and where improvements should be targeted. Following Sim8
(3), walkability can be defined as being "about accommodating walking, making it easy, efficient,9
and enjoyable." The walkability topic has been extensively addressed by literature (4, 5, 6, 7, 8, 9).10
Walkability is for instance enhanced by land-use diversity and density, nearby green areas, and less11
traffic. Reflecting on the existing research, one aspect which is often neglected when measuring12
walkability is the OTC of the pedestrian. While walkability comprises the influence on the quality,13
the term of accessibility stands for the quantitative number of opportunities (10). Low OTC can14
restrict walkability and accessibility. Evaluating OTC becomes of growing importance in the face15
of the global climate crisis. The official Swiss Climate Change Scenarios (11), indicate potential16
temperature increases in the summer months of 6°C for 2060 under the RCP8.5 scenario. Many17
studies have modeled OTC for a steady state of walking activities and environmental conditions18
(e.g. (12)). The results are typically maps that indicate which places are comfortable and which not19
(13). However, none of the existing research has connected OTC, measured with dynamic envi-20
ronmental states that are mapped to the spatio-temporal dimension of a given pedestrian trajectory,21
to the concept of walkability or accessibility.22

This paper focuses on the dynamics of OTC for pedestrians in the City of Zurich, Switzer-23
land. In a first step, we set up a data processing pipeline allowing us to estimate the OTC employing24
the thermoregulatory model from Melnikov et al. (14). We then conduct a descriptive analysis us-25
ing real-world GPS pedestrian tracks to investigate how OTC affects the route choice in an urban26
environment. Finally, we present an OTC-corrected accessibility planning tool that uses an OTC-27
corrected routing engine to predict how far pedestrians can walk comfortably facing current and28
predicted temperature conditions. The remaining paper is structured as follows: Section 2 pro-29
vides the theoretical foundation of the human thermoregulatory system (HTS), OTC assessment,30
and findings on pedestrian route choice. We then present the methodology in Section 3. Section 431
presents the results for the descriptive route choice, Section 5 for the OTC-corrected accessibility32
planning. Section 6 discusses and concludes the results.33

RELATED WORK34
Human Thermoregulation & the Two-Node Model35
In this work, we model the HTS with Melnikov et al. (14) implementation of Gagge’s two-node36
model (TNM) (15). In the TNM, the human body is divided into two concentric shells, the interior37
core with uniform Tcr and the outer skin shell with uniform Tsk. Heat transfer is realized between38
these two layers and between the outer shell and the environment. The human body aims to main-39
tain Tcr and Tsk steady and can initiate different thermoregulatory control functions to do so. If and40
how much Tcr and Tsk deviate from target values is determined by the human heat balance. The41
body tries to reach a stable state where the heat storage rate (St) is St = Hp −Hl ≈ 0. Both the42
produced (Hp) and lost heat (Hl) are influenced by the individual’s characteristics, such as weight43
and height, clothing, and especially by the surrounding microclimate. Heat is produced as a result44
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of metabolic activity (M), which is not used for mechanical work WR, and through shivering (Sh)1
in cold temperatures. The heat production is then Hp = M−WR+Sh (16). Heat lost by convection2
C (from the skin to the air) and radiative heat exchange R with surfaces in the environment, through3
respiration Re (warming and moisturizing inhaled air), and through evaporation of sweat E. The4
heat loss rate is hence Hl =C+R+E +Re (16).5

Skin Wettedness6
The existing literature reveals that in cold environments, thermal discomfort has a high correlation7
with skin surface temperature. In hot environments or while exercising, it is more related to sweat-8
ing (17, 18). The sweat produced to keep the HTS in balance evaporates. The share of skin surface9
needed to evaporate the produced sweat is called skin wettedness (wt) (18). It is a dimensionless10
variable with a minimum value equal to 0.06 because of the moisture diffusion happening through11
the skin and a maximum of 1 when sweat covers the entire skin surface (18). Nishi and Gagge (18)12
found that metabolism due to exercise determines the thermal comfort (TC) limit, resulting in a wt13
threshold (wtthr) defined as:14

wtthr = 0.0012M+0.15 (1)
15

with M in W/m2. Fukazawa and Havenith (17) confirmed this relation with a study for garment16
design on differences in comfort perception while walking at 4.5 km/h. Also, the results of Lee17
et al. (19) with eight male Japanese subjects walking between 6-8 km/h and the work of Vargas18
et al. (20) with 16 young adults from the US found that the discomfort level follows the relation19
proposed by Nishi and Gagge. In general, when studies assess walking subjects, the M-dependent20
threshold from Nishi and Gagge (18) is used or referred to.21

Pedestrian OTC Assessment22
OTC can be defined as "the condition of mind that expresses satisfaction with the outdoor thermal23
environment" (21). There are several metrics to assess OTC, which are based on the TNM. The24
most widely used is the physiologically equivalent temperature (PET) (22). An important feature of25
this index is that it provides a "feels-like" temperature allowing to compare the effect of the micro-26
climate on the thermophysiological state of a person. Further, it considers a steady physiological27
state, which is reasonable for indoor conditions but barely the case for outdoor environments due28
to the significant variance of microclimate conditions and the diverse activities people perform.29
This is why thermal history, dynamic exposure, and the activity of a person are critically important30
to assess instantaneous and dynamic thermophysiological states. Existing studies using the PET31
differ significantly regarding their results on comfortable temperature ranges because they lack the32
just mentioned aspects (23). Some scientists extended the TNM to overcome these fundamental33
limitations. Lai et al. (23) "developed a human heat transfer model that considers outdoor radiative34
heat exchange and transient heat transfer in clothing." Their overall results were satisfying, but dur-35
ing hot conditions, skin temperature prediction error was up to 6°C. An extension of Gagge’s TNM36
that is validated for the wide range of warm thermal environments is provided by Melnikov et al.37
(14). With their modified model for skin blood flow, they accurately predicted skin temperature in38
unsteady conditions for measured data on 15 subjects.39
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Pedestrian Route Choice1
Pedestrian route choice has been studied by scholars from different sectors like public health, real2
estate, pedestrian interaction modeling, designing of pedestrian infrastructure. From a perspective3
of urban- and transport planning, this paper aims to understand how the micro-built environment4
affects walking route choice to improve this built environment. Existing studies are either based5
on stated (SP) and revealed preference (RP), whereas the latter is considered to provide a better6
representation of real-world behavior (6). Numerous studies show that trip length is the primary7
determinant to chose a particular route (6). Broach and Dill (5) used 1,167 GPS tracks realized by8
283 adults (avg. trip length was 875 m) and compared several route attributes with those of pos-9
sible alternatives. They found that higher traffic (+14%), missing crossing infrastructure (+73%10
for major roads), and primarily steep uphill gradients (+99%) increase perceived walking time.11
Neighborhood commercial reduced the perceived walking time by (-28%). Guo (4) observed sub-12
way egress trips and found that steepness and parks have a high effect on utility, while sidewalk13
width, intersection density, and neighborhood businesses only have a minor influence. Erath et al.14
(8) estimated elasticities for walking time-based on SP and RP data. Amongst other variables, they15
found that active window frontage (-17.5%) and relevant greenery reduce perceived walking time16
(-23%). A recent study from Salazar Miranda et al. (9) using GPS tracks found that pedestrians17
systematically deviate from their shortest path. They do so to walk on streets close to parks, have18
more business establishments, and have urban furniture.19

If humans cannot cope with the stress caused by the microclimate and the physiological20
responses, they must adapt their behavior (24). Several studies confirm that pedestrians incorpo-21
rate behavioral adjustments to maintain their HTS in balance. Lee (25) found that not Tair but22
global radiation (GR) from the sunlight, which determines mean radiant temperature (Tmrt), was23
the reason for people changing the side of the street in a study on four locations in New York City.24
A recent study from Singapore (24) examined the effect of shade on path choice. They found that25
pedestrians’ assumed walking time in the sun was 16% higher than on a shaded path.26

METHODOLOGY27
Estimation of the Microclimate Conditions28
According to various studies, Tmrt (average temperature of the surfaces that surround a person, with29
which the person exchanges thermal radiation) is the driving parameter of human OTC (26) as Tmrt30
determines the level of radiative heat exchange and varies significantly. Other variables (e.g., Tair,31
RH) are steadier in urban environments; thus, there is less chance of them affecting the dynamics32
of HTS (16). Tmrt is calculated with the Solar Long Wave Environmental Irradiance Geometry33
model (SOLWEIG) (27). The SOLWEIG model is part of the Urban Multi-scale Environmental34
Predictor (UMEP), a tool that combines models essential for climate simulations (27). Due to its35
3D approach and high level of detail, it can contemplate complex urban situations. Several studies36
confirmed the ability of the SOLWEIG tool to predict Tmrt in different places and often better than37
its competitor Softwares RayMan Pro or ENVI-met (27, 26). SOLWEIG requires inputs such as38
digital elevation models, land cover information, sky view factor (fraction of sky which can be39
seen from a given place), meteorological data, and albedo-, emissivity- and absorption-factors of40
different materials, all of which are accessible through open data or can be calculated with UMEP’s41
preprocessors. From all these, the meteorological data represent the essential input for SOLWEIG,42
and their derivation required extensive data processing and computation. For the air temperature43
Tair and relative humidity RH, the study area is segmented into a 100x100m grid resulting in 5,71444
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patches, i.e. microclimate zones. Tair and RH are averaged from the three closest out of 28 weather1
stations, weighted by their inverse Euclidean distance. Tair is corrected for altitude differences with2
a vertical temperature gradient of 0.62°C per 100 m (28) due to the hilly topology of Zurich. The3
global radiation GR is only measured through one sensor for Zurich and hence set constant for all4
microclimate zones. For the final Tmrt calculation, all input data apart from the microclimate zones5
are aggregated to 2.5x2.5m to keep computation manageable. An example of the result is shown6
in Section 4.1.7

FIGURE 1: Mean Radiant Temperature on a 2.5x2.5m resolution for an example location for 8am
and 12am, basemap: (29)

Model for metabolic and mechanical work rate8
Metabolic and mechanical work rates are essential variables in the human heat balance. M and WR9
influence the level of heat gains. While there are simulations considering level walking (23, 14, 30),10
the gradient of the walking surface, which dramatically affects M and W , was not previously11
integrated in simulations of pedestrian heat stress. We use equation 1 adapted from Ardigò et al.12
(31) to estimate the metabolic rate M of walking:13

14
Cw = 1.866av2 −3.773bv+ c+4.456 [J · kg−1 ·m−1] (2)15

16
where a = e4.911i,b = e3.416i,c = 45.72i2 +18.9i, with i being the gradient in % and v is speed in17
m/s and add the resting metabolic cost from Since Ardigó et al.’s formula only accounts for the18
walking part of metabolic cost (Mbase), of 1.00108 [W · kg−1] (32) to Cw.19

The mechanical work WR for walking can be divided into two parts: 1. external work20
(WRext) "necessary to sustain the displacement of the center of mass of the body (COM) relative21
to the surroundings", 2. internal work (WRint) "done to move the limbs relative to the COM"22
and "work done by the trailing limb against the leading limb during double support" (33). We23
developed a new model to estimate speed and gradient dependent WR based on two studies. Values24
for WRint are taken from Minetti et al. (34) and WRext is provided by the study of Dewolf et al. (33).25
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Their data points are fitted separately with polynomial regressions, and then they are summed up.1
Both mechanical work rate and metabolic rate for walking speeds considered in this re-2

search are shown in Section 4.2.3

FIGURE 2: Estimated model of metabolic rate and mechanical work rate for different gradient-
walking speed pairs

Pedestrian Route Choice4
Network and Enrichment5
OSMnx is used to create a routable network from the pedestrian network provided by the City6
of Zurich. The pedestrian network used is composed of 54,608 edges and 17,582 nodes. With7
the elevation data sourced from the Google API (29) the gradient of each edge is calculated. The8
network is enriched with several attributes which have been identified as relevant from the literature9
(see: Section 4.3.1). The built environment attributes are sourced from OpenStreetMap (OSM)10
and the City of Zurich. The attributes include 4,639 business establishments (containing shops11
and food and beverage facilities), 7,867 urban furniture elements (including benches, trash bins,12
drinking water fountains, and public toilets), 73,042 trees (registered in the public cadaster), and13
neighboring parks and urban forests. All attributes are assigned to the corresponding edges of14
the pedestrian network if they are in a range of 10m. Furthermore, the network is enriched with15
the average weekday traffic (AAWT, in the following traffic), provided by (35) with around 60%16
network coverage. The traffic data contains the streets’ centerline and is assigned to the edges using17
a 20m range. Finally, the share of conveniently walkable gradients that is conveniently walkable18
gradient is defined as -5% to 1% because of the ratio between M and WR rate, is encoded based on19
the network topology.20
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3: Study area (a), built environment attributes: business establishments (b), urban furni-
ture (c), trees (d), parks and urban forests (e), and AAWT (f)
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Pedestrian’s Trajectory Data1
The trajectory data used for this work comes from the MOBIS-covid project, an app-based GPS-2
tracking travel diary study (36). The built environment and OTC-related attributes of these trajec-3
tories are compared to the same attributes of the shortest path of the respective origin-destination4
pair. The study area does not contain the whole city of Zurich (see Section 4.3.1 (a)) but only the5
parts which contain the majority (94%) of the trajectories due to the computational constraints.6
The 70 warmest days in 2020 are selected for the analysis. For the 70 days, the microclimate is7
calculated between 8:00 AM and 8:00 PM in 90-minute steps due to computational capacity of the8
Tmrt calculation, resulting in nine points of time in a day and a total of 630 microclimates for each9
microclimate zone. Trips shorter than 200 m are removed because they are too short to obtain a10
satisfactory result on OTC in Zurich’s climate. Moreover, paths where the start and endpoint are11
less than 200 m apart are sorted out because they are likely to be roundtrips. Hence the shortest12
path comparison would yield misleading results. The remaining trips are matched to the pedestrian13
network, using a Hidden Markov Model-based map matching framework from Meert and Verbeke14
(37). Then, the microclimate zones (100x100m) and the Tmrt cells (2.5x2.5m) are assigned to the15
trips based on time and location. In many cases, trajectories lie in more than one microclimate zone16
or Tmrt cell. In this case, the trajectory is cut, and each part of the segment is assigned to its cor-17
responding microclimate zone and Tmrt cell. To not further increase computation times, the wind18
data is mapped on each trajectory segment’s centroid. The final sample of trajectories contains19
2’660 trips, realized by 333 different individuals, of which 59% are female, with an average age of20
43 years. To initialize the thermoregulatory model, average weight and height for gender-age pairs21
of the participants are determined from the national health survey 2017 (38). The clothing level ICL22
is estimated through the linear function ICL = 1.625− 0.0375Tair, obtained from Melnikov et al.23
(30).24

OTC-Corrected Accessibility Planning25
Implementation of the Tool26
The developed tool enables users to calculate the OTC-corrected maximum walking area from27
every given point in the city. Also, here the pedestrian network of the City of Zurich is used, but28
the maximum edge length is set to 30m to get more accurate results. To calculate the isochrones29
from each point of interest, the shortest paths are calculated to all other nodes in the network,30
reachable in a defined walking time. The walking speed is assumed to be gradient-dependent,31
defined by Tobler’s hiking function (39). The assignment of the microclimate to the network and32
the clothing are done in the same way as described in Section 4.3. Additionally, it is assumed33
that Tmrt is equal to Tair if the edge is inside a building. The weight of the assessed individual34
is assumed to be 72.3kg and height 1.71m which represents the average Swiss citizen (38). The35
metabolic dependent wt threshold is calculated with Eq. (1). The trajectory’s segments have an36
average length of just 2.8 m. M depends on speed and gradient, and they are different for every37
segment of the trajectory. The threshold would hence fluctuate a lot, and it would be unrealistic to38
assume that someone stops walking when the threshold wtthr is reached for a fraction of the whole39
trip. Hence, it is decided to calculate the threshold based on the weighted mean of the edges from40
the ≈ 80 s. The paths are then cut when the threshold wtthr is exceeded. The tool’s code will be41
made available to interested colleagues on request.42
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Use Cases & Scenarios1
The tool’s usefulness is demonstrated by evaluating two of the municipality’s community centers2
for different climate scenarios. One community center (CC) is "Bäckeranlage," a dense urban dis-3
trict with relatively narrow street canyons. The other is "Oerlikon," selected because new develop-4
ments on former industrial production sites representing contemporary common building practice5
are within a 20-minute walking radius. The area enclosing all comfortable reachable edges, and6
the number of persons living in this area within 20 minutes walking time is assessed.7

The tool draws on estimating the thermoregulatory model and derivation microclimate8
zones from the previous route choice analysis. Scenarios Median and Hottest are based on the9
already computed microclimate for the 70 warmest days in 2020. As mentioned earlier, the num-10
ber of hot days (> 30°C) and the average daily maximum temperatures are expected to increase11
drastically in the future. We hence additionally evaluate the climate scenarios under RCP4.5 and12
RCP8.5 for 2060. The mean daily maximum temperature increase in August from these scenarios13
(3.5°C for RCP4.5 and 5.6°C for RCP8.5) is added to the hottest measured temperature of 2020.14
The represented quantitative and qualitative evaluation focuses on the time of day with the highest15
solar radiation, and thus highest Tmrt , i.e., 12:30. The specific scenarios are as follows:16

17
Scenario Median the median (50% higher, 50% lower), Tair at 12:30PM (09-09-20): 24.7°C18
Scenario Hottest the hottest day, Tair at 12:30PM (11-08-20): 31.4°C19
Scenario 2060 RCP4.5 the hottest day in 2060, considering scenario RCP 4.5 (11), Tair at 12:3020

PM: 34.9°C21
Scenario 2060 RCP8.5 the hottest day in 2060, considering scenario RCP 8.5 (11), Tair at 12:3022

PM: 37.0°C23

RESULTS ON ROUTE CHOICE OF MOBIS-COVID TRIPS24
Thermal Comfort25
Table 1 shows the comparison between the statistics of the chosen and shortest path. Mean Tair and26
Tmrt are almost identical. The average mean and maximum level of wt experienced during trips27
are higher for chosen paths. Also, the share of chosen paths with a higher mean and maximum28
wt was higher, which is not surprising: For the 70 warmest days that this paper is considering, the29
body must compensate for excess heat during almost the entire path (97.5%). Hence, wt increases30
steadily during a trip because the body’s core and skin temperature increases steadily, making31
increased heat losses in the form of evaporation necessary (see Section 5.1). The chosen paths32
are an average of 89 seconds/123 meters longer, meaning that the body continues sweating during33
this surplus time with higher Tcr and Tsk, resulting in the higher mean and maximum wt value for34
chosen paths. The results in a subset with trips where the chosen path is less than 10% longer than35
the shortest path confirm the hypothesis that higher wt is due to longer trips. In these cases, the36
mean and median for both wt variables are almost identical, and no more significant differences37
can be revealed. The ranges of maximum wt are on a level that does not cause strong thermal38
discomfort, and the wtthr threshold of 0.38 (M=190W/m2, v=1.4m/s) is exceeded for only three39
trips. The short mean walking time (chosen paths: ∼nine minutes, shortest paths: ∼eight minutes)40
together with the temperatures present for the MOBIS-covid data (mean Tair is 25°C), leads to41
the conclusion that anticipation of level of thermal comfort is not considered by the participants42
in the process of route choice. This might be both due to relatively comfortable overall thermal43
conditions and smaller possible differences in thermal experience in such a short period. However,44
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TABLE 1: Overall results chosen path vs. shortest path: Compared are the mean, median, and
standard deviation of the attributes for all trips. The share of chosen paths with a higher, the same,
or lower value for the attribute than its corresponding shortest path is stated. The distribution of
the attributes’ means is- compared between chosen and shortest paths with two statistical tests.

chosen path shortest path % of chosen value
is ... than shortest

attribute mean median std. mean median std. > = <

mean skin wet.*/# 0.137 0.13 0.03 0.129 0.123 0.029 87.3 0 12.7
max skin wet.*/# 0.182 0.173 0.046 0.171 0.162 0.044 85.4 0.2 14.4
mean Tair in °C 25.14 25.30 3.50 25.14 25.3 3.496 48.5 3.5 47.9
mean Tmrt in °C 37.72 38.38 11.43 37.76 38.04 11.60 50.4 0 49.5

length in m*/# 756 603 504 633 503 431 98.5 0 1.4
time in s*/# 549 439 368 460 365 315 99.9 0 0

traffic 3,139 2,478 2,735 3,272 2,523 2,907 43.9 3.3 52.8
% of flat 74.6 81.7 24.8 74 81.4 26.2 50 10 39.9
no. busin./100 m 2.539 1.614 2.777 2.61 1.608 2.927 40 11.9 48.1
no. urb. furn./100 m* 1.036 0.791 0.926 0.992 0.727 0.944 43 6.7 50.3
% along park 12.4 0 20.4 11.9 0 20.4 21.6 52.8 25.6
no. trees/100 m*/# 2.878 2.316 2.707 2.78 2.132 2.752 43.9 10.2 45.9
n=2,061, chosen = shortest path: 598, 64.3% of the chosen route is different from shortest route,
*/#=significant on α=0.05 for Mann-Whitney-U-/Two-sample Kolmogorov–Smirnov-Test
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TABLE 2: Results for longer trips: The mean value of each attribute is compared between chosen
and shortest path for subsets of trips with different minimum lengths. Statistical tests are applied
to compare the distribution of the mean for each attribute.

>696 m (n=609) >1,100 m (n=203) >1,500 m (n=96)
mean MWU/

KS2S
mean MWU/

KS2S
mean MWU/

KS2Sch. sh. ch. sh. ch. sh.

mean skin wet. 0.166 0.159 */# 0.193 0.185 * 0.209 0.202
max skin wet. 0.226 0.216 */# 0.261 0.252 0.282 0.276
mean Tair in °C 25.20 25.19 25.23 25.24 24.79 24.80
mean Tmrt in °C 36.87 37.04 38.15 38.50 39.39 40.07

length in m 1,300 1,126 */# 1,898 1,653 */# 2,365 2,084 */#
time in s 945 819 */# 1,378 1,203 */# 1,713 1,512 */#

traffic 3,534 3,848 * 3,663 3,939 3,621 4,037 */#
% of flat 72.8 71.7 69.3 68.1 68.6 68.3
no. busin./100 m 1.987 2.013 1.478 1.666 1.387 1.506
no. urb. furn./100 m 1.047 0.946 * 0.965 0.864 0.867 0.775
% along park 17.1 15.8 18.3 16.6 17.0 15.8
no. trees/100 m 3.382 3.054 * 3.528 3.034 * 3.787 3.269 *
ch. = chosen path, sh. = shortest path, */#=significant on α=0.05 for Mann-Whitney-U-(MWU) /
Two-sample Kolmogorov–Smirnov-Test (KS2S)

the results in Table 2 indicate that for longer trips, thermal comfort might play an increasing role1
in the participant’s route choice. Mean and maximum wt of chosen paths compared to shortest2
paths are becoming more similar the longer trips are. For trips longer than 1,500 m, the values of3
mean and maximum wt for both paths sets are almost equal, despite the more than three minutes4
longer walking time for chosen paths, where wt continues to increase steadily. Another indicator5
for a conscious OTC-seeking route choice behavior in the lower Tmrt for chosen paths compared6
to shortest paths, which gets higher with increasing trip lengths (by 0.17°C for trips>696 m, by7
0.35°C for trips>1,100 m and by 0.68°C for trips>1,500 m).8

Built Environment and General Observations9
In general, participants of the MOBIS-covid study prefer longer paths for their trips, both in terms10
of length and travel time. Also, for only 22.5% of the trips, people chose the shortest path. For the11
trips where the chosen path is different from the shortest path, 64.3% of the chosen route’s length12
is different from the shortest route meaning chosen paths are substantially different. In the overall13
results (see Table 1), all attributes of the built environment except business establishments have14
higher (respectively traffic lower) mean values for chosen paths when compared to the shortest15
ones. For the number of urban furniture (WMN) and trees, the distribution of the mean is signifi-16
cantly different (WMN&KS2S). Nevertheless, only for traffic and percentage of flat gradients, the17
chosen paths have a higher share of lower (for traffic) respectively higher values (for the percentage18
of flat gradients).19

It was found that for longer trips, the built environment gains importance. In Table 2 it can20
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FIGURE 4: Exemplary path, top: Trajectory, center: Air- and mean radiant temperature, and wind
speed; bottom: Skin wettedness, core- and skin temperature
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be seen that the difference between the values of the attributes for chosen and shortest path get1
more pronounced for longer trips. For example, the traffic for chosen paths considering the overall2
results is approximately 100 vehicles/h less than for the shortest paths. At the same time, there are3
around 300 fewer vehicles/h for the subset of trips where the shortest path is longer than 696m. The4
same pattern can be observed for the other attributes, except for business establishments which are5
consistently higher for shortest paths, contrary to findings of previous studies. The share of chosen6
paths with higher (for traffic lower) mean values is higher for traffic, the percentage flat gradients,7
the number of trees, and urban furniture, when considering longer trips. For the percentage of trips8
along a park, the share of chosen paths with higher values is slightly lower. The mean number of9
trees, percentage of trip along parks, percentage of flat gradients, and traffic are higher than the10
overall results for longer trips. This can be explained by that the probability of passing by green11
areas and busier roads for longer trips is higher, and the likelihood for steeper gradients is higher12
for longer trips. The number of urban furniture and business establishments is lower because there13
are fewer businesses and urban furniture along green areas.14

The analysis of the MOBIS-covid data showed that currently, OTC has a limited influence15
on route choice in Zurich. This is partly because an insufficient number of trips were done under16
temperatures that noticeably negatively affect OTC, and the length of the trips was short. This is17
confirmed by the results presented in Section 6, where it was found that the current climate has a18
weak influence on the OTC-corrected walking distance for trips up to 20 minutes. Nevertheless,19
longer trips showed that OTC could potentially play a role in the route choice, but the low samples-20
size (96) impedes secure conclusions. The designed methodology to assess OTC for the travel diary21
trips is novel, supporting that such estimation can be done with existing models and data, even on22
a citywide level. Regarding the built environment attributes, it was shown that these become more23
important for longer trips.24

RESULTS ON OTC-CORRECTED ACCESSIBILITY25
Table 3 shows the statistics for the different scenarios for the two community centers. For the26
median scenario, the area and population for both CCs are not affected at all (see Section 6).27
CC Bäckeranlage is almost unaffected by the hottest scenario. In contrast, CC Oerlikon shows28
some (minor) reductions for the area and population inside this area. Also, for the more moderate29
RCP4.5 scenario, reductions for Oerlikon are more pronounced: ca. 15% of the area is reduced,30
and population inside the area decreases by 13.4%. The losses are all located at the fringes of31
the walkable radius, which is intuitive because wt steadily increases in hot conditions. The de-32
crease in the area (-10.6%) and population inside this area (-5.2%) for CC Bäckeranlage for the33
same scenario is smaller. In the RCP8.5 scenario for CC Oerlikon, the decrease of area (-42.7%)34
and population inside the area (-36.1%) is more pronounced. For the new urban developments,35
no striking differences compared to the rest of the urban fabric can be observed. Compared to36
CC Bäckeranlage, the comfortable walking paths are reduced spatially more uniformly. For CC37
Bäckeranlage, the area is reduced by over 50%, and the population inside the area decreases by38
almost 40%. This can be explained by the high building density and extensive impervious sur-39
faces present, which is further confirmed with higher Tair (CC Bäckeranlage: 37.2°C, CC Oerlikon40
36.5°C). The difference between scenario RCP4.5 and RCP8.5 for both CCs is notable because,41
in the RCP8.5 scenario, heat loss through convection is minimized due to warmer Tair than Tsk for42
many time steps. For some time steps, heat convects from the air to the human body. See Section 643
for an example trajectory. Increased sweat production tries to compensate for this, resulting in a44



Hess et al. 15

TABLE 3: Statistics on CC Bäckeranlage and CC Oerlikon

area in km2 population inside area
before after ∆ before after ∆

C
C

B
äc

ke
ra

nl
ag

e
median 5.08 5.08 0 59,421 59,421 0

(±0%) (±0%)
hottest 5.08 5.06 -0.02 59,421 59,421 0

(-0.3%) (±0%)
2060: 5.08 4.54 -0.54 59,421 56,342 -3,079
RCP4.5 (-10.6%) (-5.2%)
2060: 5.08 2.26 -2.82 59,421 36,651 -22,770
RCP8.5 (-55.5%) (-38.3%)

C
C

O
er

lik
on

median 4.89 4.89 0 41,711 41,711 0
(±0%) (±0%)

hottest 4.89 4.71 -0.18 41,711 40,138 -1,573
(-3.5%) (-3.8%)

2060: 4.89 4.14 -0.75 41,711 36,141 -5,570
RCP4.5 (-15.3%) (-13.4%)
2060: 4.89 2.8 -2.09 41,711 26,644 -15,067
RCP8.5 (-42.7%) (-36.1%)

faster exceeding of wtthr limit. For both scenarios, radiation is negative (meaning that heat is not1
lost but gained by the body) because Tmrt is always higher than the body’s skin temperature. Very2
high Tmrt values due to missing shading on big intersections before and on bridges lead to many3
paths ending at these places in the RCP8.5 scenario.4

We demonstrated that OTC is not harmed under current climate conditions but will be5
reduced so severely in the context of future climate change that comfortable walking areas are6
diminished. The incorporation of shading in bridge design could significantly increase the range7
of thermally comfortable walks. The low RH in Zurich (ca. 40% for the hottest scenario), despite8
the high temperatures in the hottest scenario, helps efficient dissipation of heat through evaporation,9
explaining the small negative impact of the current climate on OTC. We simulated a hypothetical10
scenario of 75% relative humidity (typical for tropical cities like Singapore). The results reveal the11
significant impact of RH on comfortable walking (see Section 6). The reachable area is reduced by12
80% and the population inside this area by 70%. This represents more significant decreases than13
the 2060 RCP8.5 scenario and can be explained by the reduced possibility of losing heat through14
evaporation.15
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FIGURE 5: Human heat balance for an exemplary path (without M and WR), top: scenario hottest,
bottom: scenario 2060 RCP8.5, positive values= heat losses, negative values= heat gains
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FIGURE 6: Comfortable reachable streets for different scenarios, top: CC Bäckeranlage, bottom:
CC Oerlikon, basemap: (29)
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FIGURE 7: Comfortable reachable streets, sensitivity on relative humidity: CC Bäckeranlage,
basemap: (29)
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CONCLUSION1
The research at hand applied a human thermoregulation model to comprehensive real-world data.2
On the one hand, we assessed OTC for the trips of a travel diary study and found that the pedestrian3
path choices in the current climate of Zurich do not suggest that pedestrians integrate anticipated4
heat stress in their path planning. There are indications that they do for longer trips, but the sample5
size is too small to draw robust conclusions. Nevertheless, the developed methodology can be used6
for other study cases where climate might significantly influence route choice. Most important,7
it was shown that this is possible with existing, mainly publicly available data. Extending this8
work by modeling the route choice using discrete choice models would provide additional valuable9
findings. These insights could be implemented in software to model pedestrians more accurately10
in hot temperatures. Furthermore, the results could be used to incorporate OTC in navigation11
software such as Google Maps.12

Further, we developed a tool to assess OTC-corrected accessibility based on an OTC-13
corrected routing engine. We evaluated its usefulness for two case study locations in Zurich.14
It could be shown that the current climate does not affect accessibility thanks to relatively low15
RH. A sensitivity analysis showed that high relative humidity reduces OTC severely during hot16
temperatures. The results for the climate forecasted for 2060 showed remarkable reductions in17
OTC-corrected accessibility. In general, the developed tool can be employed in the analysis stage18
of projects that aim to secure the outdoor thermal comfort of urban dwellers by indicating the need19
for improvements spatially. A great advantage compared to the existing methods of OTC assess-20
ment (13) is the accessibility approach which permits quantifying the impact of interventions in21
terms of gain in comfortable walking areas or inhabitants for a given location. By modifying the22
parameters of the thermoregulation model, outdoor thermal comfort could also be assessed for23
particular groups of people and the public infrastructure related to them.24

Despite the demonstrated contributions, some limitations have to be mentioned. The biggest25
one is that for the modeling, it is assumed that pedestrians walk precisely on the centerlines of the26
coded pedestrian network. In reality, pedestrians almost always have a margin where to walk on27
the sidewalk. This can drastically affect the pedestrian’s OTC. The same issue also affects the28
behavior on public squares, where not all possible crossing possibilities are represented in the net-29
work. Furthermore, the threshold wtthr used in this work depends on M. It is the mostly used in30
research, but its explanation is insufficient.31

The presented work is not only of interest for practitioners and researchers in regions with32
harsher climates but due to the future increase of global temperatures, especially also for places33
where there is still time to react and implement adaptation measures to ensure attractiveness of the34
most fundamental transport mode: walking.35
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